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Abstract

Modern C++ (from C++11 onward) introduced numerous features that greatly im-
prove code expressiveness, safety, and performance compared to C++98/03. Below
is a guide organized by C++ standard version (C++11, C++14, C++17, C++20),
highlighting key new language features and idioms of each. It is designed for develop-
ers already comfortable with C++98/03 and aims to highlight the new standards and
features of C++.
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1 C++11: A New Era
C++11 was a major update—the first big revision since C++98—with many additions to
standardize common practice and improve abstraction power. It significantly changed the
way we write C++ by introducing features for type inference, range-based loops, lambdas,
improved resource management, move semantics for performance, and more. Below are some
of the most important C++11 features.

1.1 Auto Type Inference (auto)
C++11 allows automatic type deduction with auto. No more verbose iterator or type decla-
rations!

1 #include <vector>
2 #include <string>
3 #include <iostream>
4

5 int main() {
6 // Old way (C++98): explicitly specify iterator type
7 std::vector<std::string> names = {"Alice", "Bob", "Eve"};
8 std::vector<std::string>::iterator it = names.begin();
9 std::cout << *it << "\n"; // prints "Alice"

10

11 // Modern way (C++11): use auto to deduce the iterator type
12 auto it2 = names.begin();
13 std::cout << *it2 << "\n"; // prints "Alice"
14

15 // auto can deduce any type from initializer
16 auto n = 42; // n is int
17 auto d = 3.14; // d is double
18 auto name = names[1]; // name is std::string (copy of "Bob")
19 }

1.2 Range-Based For Loops
C++11 introduced a new for loop syntax to iterate over ranges (like arrays, vectors, contain-
ers) more easily. The range-based for loop automatically iterates through each element of a
range without needing an index or explicit iterator. It’s a more readable equivalent to the
traditional loop that iterates over a container’s elements

1 #include <vector>
2 #include <iostream>
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3

4 int main() {
5 std::vector<int> nums = {10, 20, 30};
6

7 // Old C++98 style: explicit index or iterator
8 for (size_t i = 0; i < nums.size(); ++i) {
9 std::cout << nums[i] << " ";

10 }
11 std::cout << "\n";
12

13 // C++11 range-based for loop: simpler iteration
14 for (int value : nums) {
15 std::cout << value << " ";
16 }
17 std::cout << "\n";
18

19 // You can also use references to avoid copies or modify elements
20 for (int &value : nums) {
21 value += 5; // modify in place
22 }
23 for (const int &value : nums) {
24 std::cout << value << " "; // prints modified values: 15 25 35
25 }
26 }
27

1.3 Lambda Expressions
C++11 added lambda expressions, which are essentially inline anonymous function objects
(closures) that you can define and invoke on the fly. Lambdas provide a convenient way to
pass custom logic to algorithms (like std::sort, std::for each) without writing separate
function objects or function definitions. They are particularly useful when used in combination
with STL functions.

1 #include <algorithm>
2 #include <vector>
3 #include <iostream>
4

5 int main() {
6 std::vector<int> data = {3, 1, 4, 1, 5, 9};
7
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8 // Sort in descending order using a lambda as the comparison
9 std::sort(data.begin(), data.end(), [](int a, int b) {

10 return a > b; // lambda returns true if a should come before b
11 });
12

13 // Print sorted result
14 for (int x : data) {
15 std::cout << x << " "; // Output: 9 5 4 3 1 1
16 }
17 }

1.4 Rvalue References & Move Semantics
One of the most impactful C++11 features for performance is rvalue references (&&) and
move semantics. These address the inefficiency of unnecessary copies. An rvalue reference is
a reference that can bind to temporary objects (rvalues), which C++98 could not do (except
with const references). Using rvalue references, C++11 introduced move constructors and
move assignment operators that transfer resources (like heap memory) from one object to
another instead of copying them. Move semantics allow objects to be moved cheaply, avoiding
expensive deep copies when the original object is a temporary.
In practice, move semantics mean you can std::move an object to explicitly indicate you want
to transfer its contents elsewhere. After moving, the source object is left in a valid but
unspecified state (often empty). This is especially beneficial for classes managing resources
(e.g., vectors, strings, file handles) because it can eliminate needless allocations and copies.

1 #include <iostream>
2 #include <string>
3 #include <utility> // for std::move
4

5 int main() {
6 std::string a = "This is a large string.";
7 std::string b;
8

9 // Copy semantics (C++98): b gets a copy of a (expensive for large data)
10 b = a;
11 std::cout << "After copy, a = \"" << a << "\"\n";
12

13 // Move semantics (C++11): b takes ownership of a's data (no copy of
contents)↪→

14 b = std::move(a);
15 std::cout << "After move, a = \"" << a << "\"\n";

5



Guide to Modern C++ Adam Abed Abud

16 std::cout << "After move, b = \"" << b << "\"\n";
17 }

Output:

1 After copy, a = "This is a large string."
2 After move, a = ""
3 After move, b = "This is a large string."

In the copy, a remained unchanged and b got a duplicate. In the move, b took over the
data from a, and a was left empty (since its content was moved out). No costly copy of the
buffer occurred. Move semantics thus “avoid unnecessary copies of temporary objects” and
can significantly improve performance, especially in containers like std::vector when resizing or
returning large objects from functions. To enable moves, classes can define a move construc-
tor/assignment (or use =default to let the compiler generate them if the class has no custom
copy logic). Standard library containers and types adopted move semantics in C++11, so
they automatically use moves in many situations (e.g., v.push back(std::move(obj)) will
move obj into the vector).

1.5 Smart Pointers (std::unique ptr and std::shared ptr)
C++11 introduced smart pointer types unique ptr and std::shared ptr (in < memory >)
to improve memory management and replace raw pointers for owning memory. unique ptr<T>
represents exclusive ownership of a heap-allocated object (at most one unique ptr can own a
given object), while std::shared ptr<T> is a reference-counting pointer that allows shared
ownership (multiple pointers to the same object, which is deleted when the last reference
goes away). These smart pointers automatically delete the managed object in their destruc-
tor, following RAII principles, which helps prevent memory leaks and makes exception-safe
code easier.
In modern C++, using raw new and delete is strongly discouraged; instead, you allocate with
a smart pointer (or use factory functions like std::make unique, shown later) and let it
manage the lifetime. Smart pointers also integrate with move semantics (unique ptr can be
moved but not copied).

1 #include <memory>
2 #include <iostream>
3

4 struct Song {
5 std::string title;
6 Song(std::string t) : title(std::move(t)) {
7 std::cout << "Song \"" << title << "\" created.\n";
8 }
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9 ˜Song() {
10 std::cout << "Song \"" << title << "\" destroyed.\n";
11 }
12 };
13

14 int main() {
15 // Using a raw pointer (C++98 style):
16 Song* songPtr = new Song("Imagine");
17 // ... use songPtr ...
18 delete songPtr; // must manually delete to avoid leak
19

20 // Using unique_ptr (C++11 RAII style):
21 std::unique_ptr<Song> songPtr2(new Song("Let It Be"));
22 // ... use songPtr2 ...
23 } // songPtr2 goes out of scope here, automatically deleting the Song

Output:

1 Song "Imagine" created.
2 Song "Imagine" destroyed.
3 Song "Let It Be" created.
4 Song "Let It Be" destroyed.

In this example, songPtr2 is a std::unique ptr< Song > that owns the Song object.
When songPtr2 exits scope, its destructor deletes the Song object automatically, so we don’t
need to call delete. This automatic cleanup is essential for exception safety: even if an
exception occurs, the unique ptr will clean up the resource. By contrast, with the raw
pointer songPtr, if an exception had occurred before the delete, the program would leak
memory. std::shared ptr works similarly but allows multiple pointers to share the same
object (and uses reference counting to delete when appropriate). Prefer unique ptr when
you don’t need shared ownership. Smart pointers make memory management safer and easier,
embracing the RAII idiom (“resource acquisition is initialization”).

1.6 Standard Threads (std::thread)
C++11 introduced std::thread to provide a standard way to launch and manage threads.
Previously, developers relied on platform-specific APIs or third-party libraries for multithread-
ing. With std::thread, you can easily create threads that execute functions, lambdas, or
function objects.

1 #include <iostream>
2 #include <thread>
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3

4 void hello() {
5 std::cout << "Hello from thread!\n";
6 }
7

8 int main() {
9 std::thread t(hello); // Start a thread running the 'hello' function

10 t.join(); // Wait for the thread to finish
11 std::cout << "Back in main.\n";
12 }

You can also use lambdas with std::thread:

1 std::thread t([] {
2 std::cout << "Hello from lambda thread!\n";
3 });
4 t.join();

std::thread::join() waits for the thread to finish. If you forget to call join() or
detach() on a thread before the thread object is destroyed, the program will terminate.

1.7 Compile-Time Constants and Functions (constexpr)
C++11 introduced the constexpr keyword, allowing certain variables and functions to be
evaluated at compile time. A constexpr variable is effectively a constant expression (like an
enum or #define in old C++, but with type safety), and a constexpr function can produce
compile-time results if called with constant inputs. This enables performing computations at
compile time (for efficiency or to use results in contexts that require compile-time constants,
like array sizes or template parameters). In C++11, constexpr functions had strict limitations
(only a single return statement, etc.), but even this allowed things like computing Fibonacci
or factorial at compile time. C++14 and C++20 further relaxed and extended constexpr
(allowing loops, multiple statements, and even heap allocation by C++20).

1 #include <iostream>
2 constexpr int factorial(int n) {
3 // Compute factorial at compile time (C++14 allows loops in constexpr)
4 int result = 1;
5 for(int i = 1; i <= n; ++i) {
6 result *= i;
7 }
8 return result;
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9 }
10

11 int main() {
12 constexpr int val = factorial(5); // computed at compile time
13 std::array<int, factorial(3)> arr; // factorial(3)=6, array of

length 6↪→

14 std::cout << "5! = " << val << "\n"; // prints "5! = 120"
15 std::cout << "Size of arr = " << arr.size();
16 }

In this snippet, factorial is declared constexpr, so calls with constant arguments (like facto-
rial(5)) are evaluated by the compiler at compile time. We even use factorial(3) in an array
bound, something not possible with a regular function. In C++11, the factorial function
would have to be written recursively or as a single return expression (because C++11 const-
expr functions couldn’t have loops), but C++14 relaxed those rules, allowing the loop shown
above. constexpr is very useful for meta-programming and for performance (compute once at
compile time, reuse at runtime without cost).

1.8 A Type-Safe Null Pointer (nullptr)
C++11 introduced nullptr as a new keyword to represent a null pointer constant (replacing
the traditional NULL macro or literal 0). Unlike NULL (which is typically defined as 0), nullptr
is of type std::nullptr t and can only be converted to pointer types, making it type-safe. This
prevents ambiguous situations (e.g., choosing between overloaded functions or constructors
that accept integers vs pointers) and makes code intent clearer.

1 #include <iostream>
2

3 void foo(int x) { std::cout << "foo(int)\n"; }
4 void foo(void* p) { std::cout << "foo(void*)\n"; }
5

6 int main() {
7 foo(0); // calls foo(int) { 0 is int, might not be intended
8 // foo(NULL); // would call foo(int) as NULL is 0 (int), potentially

surprising↪→

9 foo(nullptr); // calls foo(void*) { nullptr is a null pointer, calls
pointer overload↪→

10 }
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1.9 Strongly-Typed Enums (enum class)
C++98 enums were plain enums that would implicitly convert to int and could cause name
conflicts (all enumerators lived in the enclosing scope). C++11 introduced scoped enums
via the enum class syntax. These are strongly-typed and scoped: the enumerators do not
implicitly convert to integers, and they are accessed with their scope. This makes enums safer
and better encapsulated.

1 #include <iostream>
2

3 // C++98 style enum
4 enum Color { RED, GREEN, BLUE }; // RED, GREEN, BLUE are in global

scope, implicitly int↪→

5

6 // C++11 enum class
7 enum class Animal { Dog, Cat, Lion }; // Animal::Dog, Animal::Cat,

Animal::Lion are scoped and strongly typed↪→

8

9 int main() {
10 Color c = RED;
11 int n = BLUE; // allowed in old enums (BLUE converts to int 2)
12 // Animal a = Lion; // ERROR: Lion is not in this scope (must use

Animal::Lion)↪→

13 Animal a = Animal::Lion; // OK
14 // int x = Animal::Dog; // ERROR: no implicit conversion from Animal to

int↪→

15 if (a == Animal::Lion) {
16 std::cout << "It's a lion!\n";
17 }
18 }

1.10 Compile-Time Assertions (static assert)
static assert is a compile-time assertion introduced in C++11. It allows you to check condi-
tions at compile time and produce a compilation error with a message if the condition is false.
This is useful for validating template parameters, constants, or platform-specific assumptions
(like type sizes) during compilation rather than at runtime.

1 #include <type_traits>
2

3 template<typename T>
4 void processIntegralType(T value) {
5 static_assert(std::is_integral_v<T>, "T must be an integral type");
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6 // Function implementation assumes T is integral...
7 }
8

9 int main() {
10 processIntegralType(42); // OK, int is integral
11

12 // processIntegralType(3.14); // ERROR at compile time: static
assertion failed↪→

13 }

Here, static assert(std::is integral v¡T¿, ”T must be an integral type”); checks at compile
time that the template type T is an integral type. If we try to call processIntegralType with a
non-integral type (like double), the static assertion fails and the compiler emits the provided
error message. In C++98, similar checks had to be done with tricky template techniques or
runtime asserts. static assert makes intent clear and fails early during compilation if conditions
are not met.
C++11 introduced many other features as well (such as override/final for virtual functions,
variadic templates for templates with variable number of arguments, new std::thread library
for concurrency, noexcept specifier, std::initializer list, etc.), but the above features are among
the most impactful in day-to-day C++ development.

2 C++14: Small Enhancements
C++14 was a smaller update (a follow-on to C++11) that added some convenient language
improvements and relaxed certain rules, making C++11 features easier to use. Key C++14
features include generic lambdas, lambda capture initializers, return type deduction for nor-
mal functions, constexpr enhancements, and some new standard library utilities. Here are
important C++14 additions.

2.1 Generic Lambdas
While C++11 lambdas required specifying the type of each parameter, C++14 allows auto
in lambda parameter lists. Generic lambdas make the lambda a template, deducing the
parameter types at call sites. This is especially useful for writing function objects that work
with any type, similar to templates, but with lambda convenience.

1 #include <iostream>
2 #include <vector>
3 #include <algorithm>
4

5 int main() {
6 // A generic lambda that adds two elements of any type
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7 auto add = [](auto x, auto y) {
8 return x + y;
9 };

10

11 std::cout << add(2, 3) << "\n"; // x and y deduced as int,
outputs 5↪→

12 std::cout << add(2.5, 3.1) << "\n"; // x and y deduced as double,
outputs 5.6↪→

13

14 // Using generic lambda in an algorithm (e.g., transform to double each
element)↪→

15 std::vector<int> v = {1, 2, 3};
16 std::vector<int> result;
17 result.resize(v.size());
18 std::transform(v.begin(), v.end(), result.begin(), [](auto n) { return n

* 2; });↪→

19 // result now contains {2, 4, 6}
20 }

In this example, the lambda [](auto x, auto y) return x + y; can add two integers or two
doubles (or any types supporting +). The compiler generates the appropriate function for
each call. This avoids writing overloaded lambdas or specifying templates explicitly – the
lambda itself is polymorphic. C++14’s generic lambdas thus provide a succinct way to create
function templates on the fly.

2.2 Lambda Capture Initializers
C++14 also improved lambdas by allowing initialized captures (sometimes called lambda
capture by value with initialization or generalized lambda capture). This lets you capture an
expression or move-only object by value directly within the capture clause. In C++11, you
could capture this or variables by value or reference, but you couldn’t capture the result of
an expression or a move-only object (like std::unique ptr) without first storing it in a named
variable. C++14’s capture init syntax solves that by allowing forms like [name = expr] in the
capture list.

1 #include <iostream>
2 #include <memory>
3

4 int main() {
5 std::unique_ptr<int> ptr(new int(42));
6

7 // C++11 needed a workaround to capture move-only ptr (e.g., make it
global or use reference wrapper)↪→
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8 // C++14: capture ptr by moving it into the lambda
9 auto lam = [p = std::move(ptr)]() {

10 // inside lambda, use p as a unique_ptr<int>
11 if (p) {
12 std::cout << "Value = " << *p << "\n";
13 }
14 };
15

16 // ptr is now null (ownership moved into lambda's p)
17 lam(); // prints "Value = 42"
18 // lam(); // calling again would print "Value = 42" again (p still holds

the value inside lambda)↪→

19 }

In this code, the lambda capture [p = std::move(ptr)] creates a new data member p inside
the lambda closure, initialized by moving ptr into it. This means the lambda takes ownership
of the dynamic int. We couldn’t do this in C++11 directly. Similarly, you could capture
[value = someFunction()] to execute an expression and store its result in the lambda.
This feature makes lambdas more powerful and convenient, especially with asynchronous
code or callback-based code where you often need to capture move-only types or computed
values.

2.3 Return Type Deduction
C++11 allowed auto in function definitions only in the context of trailing return type syntax
(e.g., auto func()− > int). C++14 extends type deduction to normal function return types
(not just lambdas). You can declare a function with auto as its return type, without specifying
− > ..., and the compiler will deduce the return type from the function’s return statements.
This works if all return statements yield the same type. It’s especially handy for template
code or when the return type is complicated or dependent on template parameters.
auto return type for regular functions:

1 #include <iostream>
2 #include <vector>
3

4 // C++14 allows this: return type will be deduced.
5 auto combineVectors(const std::vector<int>& a, const std::vector<int>& b) {
6 std::vector<int> result = a;
7 result.insert(result.end(), b.begin(), b.end());
8 return result; // compiler deduces return type as std::vector<int>
9 }

10
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11 int main() {
12 std::vector<int> v1 = {1, 2}, v2 = {3, 4};
13 auto combined = combineVectors(v1, v2);
14 // combined is deduced as std::vector<int>
15 for(int x : combined) std::cout << x << " "; // Output: 1 2 3 4
16 }

2.4 Binary Literals and Digit Separators
C++14 introduced minor but helpful improvements for numeric literals:

• Binary literals: You can write integers in binary using the prefix 0b or 0B. For example,
0b1011 represents the binary number 1011 (which is 11 in decimal). In C++98/11, you
would have to use octal or hexadecimal or manually convert from binary strings.

• Digit separators: You can use the single quote ’ as a digit separator in numeric literals
to improve readability. It’s ignored by the compiler, but helps humans read long literals
(for example, 1’000’000 is one million). This works in integer and floating literals.

1 #include <iostream>
2 int main() {
3 int mask = 0b1100'1101; // binary literal for 0xCD (205 in decimal)
4 int bigNumber = 1'000'000; // 1000000, easier to read with separators
5 double avogadro = 6.022'140'76e23; // Avogadro's number, using

separators for readability↪→

6

7 std::cout << "mask = " << mask << "\n"; // prints 205
8 std::cout << "bigNumber = " << bigNumber << "\n"; // prints 1000000
9 std::cout << "Avogadro " << avogadro << "\n";

10 }

2.5 Safer Object Creation (std::make unique)
In C++11, we got std::unique_ptr, but a corresponding factory function std::make_unique
was only added in C++14.
The std::make_unique<T>(args...) function allocates a new T with the given constructor
arguments and returns a std::unique_ptr<T> to it.
It is not a core language feature, but an important library idiom. Using make_unique is
recommended because it avoids certain potential issues (such as memory leaks if an exception
is thrown in the middle of a new expression with multiple arguments) and it reduces typing
by not needing to repeat the type on both sides of an assignment.
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1 #include <memory>
2 #include <string>
3 #include <iostream>
4

5 struct Widget {
6 Widget(const std::string& name) : name(name) {
7 std::cout << "Widget " << name << " constructed\n";
8 }
9 std::string name;

10 };
11

12 int main() {
13 // C++11 style unique_ptr creation:
14 std::unique_ptr<Widget> w1(new Widget("Alpha"));
15

16 // C++14 style using make_unique:
17 auto w2 = std::make_unique<Widget>("Beta");
18

19 std::cout << "w1->name = " << w1->name << "\n";
20 std::cout << "w2->name = " << w2->name << "\n";
21 }

Output

1 Widget Alpha constructed
2 Widget Beta constructed
3 w1->name = Alpha
4 w2->name = Beta

Both w1 and w2 are unique_ptrs owning a Widget, but make_unique makes the code shorter
(auto w2 = std::make_unique<Widget>("Beta")) and more exception-safe.
std::make_unique was missing in C++11, and developers often wrote their own or used
std::shared_ptr<T> p(new T(...)) as a workaround, but now it is part of the standard.
Always prefer make_unique to construct unique_ptrs.

3 C++17: More Expressive, More Powerful
C++17 continued the evolution with a mix of big and small features that cleaned up lan-
guage edges and introduced new ways to decompose and conditionally compile code. Notable
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C++17 features include structured bindings, selection statements with initializers, if const-
expr for compile-time branching, inline variables, improvements to templates, and new library
types like std::optional, std::variant, std::any, std::string view, as well as the filesystem library.
Here are the key C++17 features:

3.1 Structured Bindings
Structured bindings provide a convenient syntax to unpack tuples, pairs, structs, and other
multi-member objects into separate variables. In C++98/11, one might use std::tie or manual
unpacking, but with structured bindings you can declare multiple variables that directly bind
to the elements of a tuple-like object. This greatly simplifies code that works with functions
returning multiple values (via std::tuple or struct) or iterating maps, etc.

1 #include <tuple>
2 #include <map>
3 #include <string>
4 #include <iostream>
5

6 int main() {
7 // Example 1: Unpacking a tuple
8 std::tuple<int, std::string, double> personData(42, "Alice", 170.5);
9 auto [id, name, height] = personData;

10 std::cout << "ID=" << id << ", Name=" << name << ", Height=" << height <<
"\n";↪→

11

12 // Example 2: Iterating a map with structured bindings (key, value)
13 std::map<std::string, int> scores = { {"Bob", 10}, {"Alice", 20} };
14 for (const auto& [player, score] : scores) {
15 std::cout << player << " has score " << score << "\n";
16 }
17 }

Output

1 ID=42, Name=Alice, Height=170.5
2 Bob has score 10
3 Alice has score 20

3.2 Compile-time Conditional (if constexpr)
C++17 introduced if constexpr which is a compile-time conditional inside templates. It allows
you to conditionally compile code based on a constant expression (often a trait of a template
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parameter). If the condition is false, the branch is discarded at compile time, so even if it
contains code that would be ill-formed for some types, it won’t cause a compilation error
(similar to SFINAE techniques, but more straightforward). This is extremely useful for writing
templated code that needs to do different things depending on type properties.

1 #include <iostream>
2 #include <type_traits>
3

4 template<typename T>
5 void printNumberOrPointer(T value) {
6 if constexpr (std::is_pointer_v<T>) {
7 // This branch is compiled only if T is a pointer type
8 std::cout << "Pointer value: " << value
9 << ", pointing to " << *value << "\n";

10 } else {
11 // This branch is compiled if T is not a pointer
12 std::cout << "Non-pointer value: " << value << "\n";
13 }
14 }
15

16 int main() {
17 int x = 42;
18 printNumberOrPointer(x); // T deduced as int, non-pointer branch runs
19 printNumberOrPointer(&x); // T deduced as int*, pointer branch runs
20 }

Output:

1 Non-pointer value: 42
2 Pointer value: 0x7ffe... , pointing to 42

In printNumberOrPointer, we use if constexpr (std::is pointer v< T >). For T = int,
the constexpr condition is false, so the else branch is compiled and the pointer branch is
discarded (even though *value would be invalid for non-pointers, it’s not compiled in that
case). For T = int∗, the condition is true, so the pointer branch is compiled. This feature
enables cleaner template code without needing tricks like tag dispatch or partial specialization
for simple cases. It significantly improves template metaprogramming readability.

3.3 Inline Variables
Prior to C++17, the inline keyword could not be applied to variables (only to functions),
which made defining certain constants in header files cumbersome (the header would need an
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extern declaration and a definition in a .cpp file to avoid ODR violations). C++17 introduced
inline variables, allowing the definition of a variable in a header such that it’s treated as if it
has internal linkage (avoiding multiple definition errors). This is mainly useful for constants
or singletons that you want to define in header-only libraries.

1 // config.h (header file)
2 #pragma once
3 #include <string>
4 inline const int MaxConnections = 8; // inline constant
5 inline std::string defaultName = "Guest"; // inline variable (non-const

also allowed)↪→

6

7 // main.cpp
8 #include <iostream>
9 #include "config.h"

10

11 int main() {
12 std::cout << "MaxConnections=" << MaxConnections << "\n";
13 defaultName = "Admin";
14 std::cout << "Name=" << defaultName << "\n";
15 }

Here, MaxConnections and defaultName are defined as inline. You can include config.h in
multiple source files and still have only one instance of these variables in the program. The
inline variable tells the compiler that this is the same object across all inclusions (similar to how
inline functions work). This feature is primarily for convenience in defining global constants
or single-instance objects in header-only modules.

3.4 New std functions: std::optional, std::variant, std::any
C++17 introduced several new std types in the <optional>, <variant>, and <any> headers
that are very useful for certain idioms:

• std::optional: Represents an optional value – either contains a T or is “empty”.
This is a type-safe way to indicate “nullable” or “optional” return values instead of
using pointers or special values. It’s useful for functions that might not return a value
(e.g., a search that might fail) – in C++98 one might return a boolean and an output
parameter or something, but now returning optional<T> is more expressive.

• std::variant: A type-safe union that can hold one of several types (from a fixed
set). It’s like a tagged union or an enum+union combination, replacing the need for
boost::variant or manual unions with tag variables. You can retrieve the value with
std::get or visit it with std::visit (providing a lambda for each type).

• std::any: A type-safe container for single values of any type. It can hold one value
of any type (type-erased). You can query the stored type and attempt to cast it back.

18



Guide to Modern C++ Adam Abed Abud

It’s useful for when you need a truly generic container for one value, replacing the need
for boost::any.

1 #include <optional>
2 #include <iostream>
3 #include <string>
4

5 std::optional<std::string> findKeyword(const std::string& text) {
6 if (text.find("C++") != std::string::npos) {
7 return "C++"; // found the keyword
8 }
9 return std::nullopt; // std::nullopt indicates "no value"

10 }
11

12 int main() {
13 auto result = findKeyword("I love C++17 features");
14 if (result) { // or result.has_value()
15 std::cout << "Found keyword: " << *result << "\n";
16 } else {
17 std::cout << "Keyword not found\n";
18 }
19 }

In findKeyword, we return std::optional<std::string> it either contains the found
word ”C++” or nothing (std::nullopt). The caller checks if (result) to see if a value was
returned, and uses *result to access the string if present. In C++98, we might have returned
an index or a boolean plus output parameter, but optional provides a clearer intention: the
result might or might not be there. Similarly, variant and any (not shown here for brevity)
open up new ways to design APIs: for instance, a variant¡int, std::string¿ function result could
mean “it might return either an int or a string”, and the caller must handle both. These types
make C++ more expressive and less error-prone by providing standard solutions to common
needs (nullable values, union types).

3.5 std::string view
std::string view (in <string view>) is a new lightweight view into a string (added in
C++17). It basically acts like a pointer to a segment of a string plus a length, and it doesn’t
own the string data. The benefit is that it allows functions to accept a string view to read
from strings or character arrays without copying. In C++98, if you wanted a function to
accept both std::string and C-string inputs efficiently, you might write overloads or accept
constchar∗ and conststd :: string& separately. With string view, a single function can
accept a std::string view, and you can pass it a std::string, a string literal, or a char∗ +
length easily. It’s great for read-only string operations where you want to avoid unnecessary
allocations.
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1 #include <string_view>
2 #include <iostream>
3 void printMessage(std::string_view message) {
4 std::cout << "Message: " << message << "\n";
5 }
6

7 int main() {
8 std::string hello = "Hello";
9 const char* world = "World";

10 printMessage(hello); // std::string can be passed
11 printMessage("Goodbye string_view"); // string literal can be passed
12 printMessage(std::string( world )); // C-string or anything convertible
13 }

The printMessage function can take any string-like input without creating a new std::string
internally. It simply views the passed data. One must be careful that the data pointed to
remains valid for the duration of use (e.g., don’t pass a string view that points to a temporary
that goes out of scope), but in many cases it leads to more efficient code by avoiding copies.
std::string view is often used for function parameters and for slicing strings.

3.6 Filesystem Library
C++17 integrates the filesystem library (previously experimental/Boost.Filesystem) into ¡filesys-
tem¿. This library provides facilities to work with files and directories: path manipulation,
directory iteration, file status (existence, size, permissions), and file operations (create direc-
tories, remove, rename, etc.). In C++98, one had to use platform-specific APIs or third-party
libraries for these tasks. Now it’s standardized.

1 #include <filesystem>
2 #include <iostream>
3 namespace fs = std::filesystem;
4 int main() {
5 fs::path filePath("test.txt");
6

7 // Check if file exists
8 if (fs::exists(filePath)) {
9 std::cout << filePath << " exists, size = "

10 << fs::file_size(filePath) << " bytes\n";
11 } else {
12 std::cout << filePath << " does not exist\n";
13 }
14
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15 // Create a directory
16 fs::create_directory("example_dir");
17 // Iterate over current directory
18 for (const auto& entry : fs::directory_iterator(".")) {
19 std::cout << "Found " << entry.path().filename() << "\n";
20 }
21 }

C++17 had other improvements as well (inline if/switch as we saw, folding for parameter
packs, template argument deduction for class templates so you can instantiate templates
like std::pair(1,2.5) without specifying types, new attributes like [[nodiscard]], and
more), but the above features are among the most useful for day-to-day development.

4 C++20: New and modern features
C++20 is another significant milestone, often considered one of the largest updates since
C++11. It introduced major features that further empower C++ developers: modules for
better encapsulation and build times, concepts for template constraints, coroutines for asyn-
chronous and lazily-evaluated code, the ranges library for more expressive collection process-
ing, the three-way comparison (spaceship) operator to simplify comparisons, and several other
improvements (like designated initializers, expanded constexpr capabilities, consteval and con-
stinit, calendar/time library, etc.). Below are the key C++20 features and their usage.

4.1 Concepts and Template Constraints
Concepts introduce a way to specify constraints on template parameters, making templates
safer and error messages clearer. In essence, a concept is a compile-time predicate (a set of
requirements) that a type must satisfy. You can use concepts in template declarations (using
the concept keyword to define one, or using library concepts from ¡concepts¿ like std::integral)
to require that template arguments meet certain criteria (e.g., ”this template type must have
a + operator” or ”must be an integral type”). This helps catch misuse of templates at compile
time with friendly errors, and it documents the intended usage of a template directly in its
interface.

1 #include <concepts>
2 #include <iostream>
3

4 // Use a standard library concept to constrain template (std::integral means
integer types)↪→

5 template <std::integral T>
6 T addNumbers(T a, T b) {
7 return a + b;
8 }
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9

10 template <typename T>
11 concept HasSize = requires(T x) { x.size(); };
12 // custom concept: type T must have a size() method
13

14 template <HasSize T>
15 void printSize(const T& container) {
16 std::cout << "Size is " << container.size() << "\n";
17 }
18

19 int main() {
20 std::cout << addNumbers(3, 4) << "\n"; // OK, int is integral

(prints 7)↪→

21 // std::cout << addNumbers(2.5, 3.5) << "\n"; // Error: double not
allowed (not integral)↪→

22

23 std::string s = "hello";
24 printSize(s); // OK, std::string has size()
25 // printSize(42); // Error: int doesn't have size()
26 }

In addNumbers, we constrained the template with std::integral concept (from <concepts>
library) to accept only integral types. If someone tries to call addNumbers with a non-integral
type like double, they get a clear compile-time error about constraints not satisfied. We also
defined a custom concept HasSize which uses a requires expression to ensure the type has a
.size() member. The function template printSize then only accepts types satisfying HasSize.
If you try to call it with an int, the error will say that int doesn’t satisfy HasSize (because it
lacks size()). Concepts thus allow template authors to explicitly state requirements, and the
compiler checks them before instantiation. This results in cleaner template code (no need for
SFINAE tricks) and better compile-time diagnostics.

4.2 Ranges Library
The C++20 ranges library (in <ranges>) reimagines how we work with collections and algo-
rithms, making them more composable and declarative. Ranges allow you to create pipeline of
operations on collections using range adapters (such as views::filter, views::transform)
and to use algorithms in a way that integrates with these adapters. The ranges library adds
a lot of expressive power to C++ by letting you write code that clearly expresses intent (like
“filter this sequence to even numbers, then transform to squares, then iterate”). It also builds
on concepts to ensure type safety of these compositions.

1 #include <ranges>
2 #include <vector>
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3 #include <iostream>
4

5 int main() {
6 std::vector<int> numbers = {1, 2, 3, 4, 5, 6};
7

8 // Use ranges to create a view of even squares
9 auto evenSquares = numbers

10 | std::views::filter([](int x) { return x % 2 == 0; })
11 | std::views::transform([](int x) { return x * x; });
12

13 // evenSquares is a lazily evaluated view: no new container created
14 for (int value : evenSquares) {
15 std::cout << value << " "; // will print: 4 16 36 (squares of 2,4,6)
16 }
17 std::cout << "\n";
18 }

In this snippet, numbers std::views::filter(...) std::views::transform(...) cre-
ates a pipeline: first filter the numbers to even ones, then transform each to its square. The
result evenSquares is a view – it doesn’t store new integers, it will iterate through the original
vector and apply the operations on the fly. The range-based for loop then prints the results.
This kind of code is very expressive compared to equivalent manual loops in C++98. The
ranges library also includes range versions of many ¡algorithm¿ functions (in <algorithm> or
<ranges>), for example std::ranges::sort can directly sort a container (no need to pass be-
gin/end). Overall, ranges allow “composable transformations on collections of data”, greatly
increasing expressive power

4.3 Coroutines
Coroutines in C++20 are a major feature enabling asynchronous and lazy computations. A
coroutine is a function that can suspend and resume execution while maintaining its state. In
C++20, a function becomes a coroutine if it uses co await, co yield, or co return. Coroutines
allow writing code in a synchronous style that actually executes asynchronously or incremen-
tally (for example, to implement generators or async I/O)

• co return value; returns a value (or completes the coroutine).
• co yield value; produces a value and suspends (for generator-style coroutines).
• co await; suspends until the awaited thing is ready (for async tasks).

Unlike regular functions, coroutines don’t unwind the stack on suspension; instead, they
preserve state in a heap-allocated coroutine frame and can resume later.
A full coroutine example requires understanding promise types and coroutine handles, which
is advanced. However, we can illustrate a simple use-case: a generator coroutine that yields
a sequence of values.
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1 #include <coroutine>
2 #include <iostream>
3

4 // Pseudo-code: a simple generator type for demonstration
5 template<typename T>
6 struct Generator {
7 struct promise_type {
8 T currentValue;
9 Generator get_return_object() {

10 return Generator{
std::coroutine_handle<promise_type>::from_promise(*this) };↪→

11 }
12 std::suspend_always initial_suspend() { return {}; }
13 std::suspend_always final_suspend() noexcept { return {}; }
14 std::suspend_always yield_value(T value) {
15 currentValue = value;
16 return {};
17 }
18 void return_void() {}
19 void unhandled_exception() { std::terminate(); }
20 };
21

22 std::coroutine_handle<promise_type> coro;
23 Generator(std::coroutine_handle<promise_type> h) : coro(h) {}
24 ˜Generator() { if (coro) coro.destroy(); }
25

26 // Get next value from the generator
27 T next() {
28 if (!coro.done()) {
29 coro.resume();
30 return coro.promise().currentValue;
31 }
32 throw std::out_of_range("Generator finished");
33 }
34 };
35

36 // A coroutine function that yields an infinite arithmetic sequence
37 Generator<int> countBy(int start, int step) {
38 int value = start;
39 while (true) {
40 co_yield value;
41 value += step;

24



Guide to Modern C++ Adam Abed Abud

42 }
43 }
44

45 int main() {
46 auto seq = countBy(5, 5); // sequence: 5, 10, 15, 20, ...
47 std::cout << seq.next() << " "; // 5
48 std::cout << seq.next() << " "; // 10
49 std::cout << seq.next() << "\n"; // 15
50 }

In this conceptual example, countBy is a coroutine that yields an infinite sequence starting
from start and incrementing by step. Each co yield value; produces a value and suspends the
coroutine. The Generator¡int¿ type is a simplified coroutine return type that manages the
coroutine’s state (the actual implementation in production code might be more complex or
use a library/TS). In main, we get a generator and then call next() to get subsequent values.
The output demonstrates that state is preserved between calls (it keeps counting).
Coroutines allow writing asynchronous code (like waiting for I/O) in a sequential fashion
without blocking threads, or implementing lazy generators as shown. They are a powerful
feature for advanced scenarios like event loops, pipelines, or infinite sequences, enabling code
that “executes asynchronously (e.g. non-blocking I/O without explicit callbacks) and supports
lazy-computed infinite sequences”

4.4 Modules
Modules are a huge change in C++20 that aims to replace the traditional header/include
mechanism with a more robust, scalable system. A module encapsulates code (like functions,
classes, etc.) and explicitly exports the parts that should be visible outside. Other translation
units can import the module rather than including textual headers. Modules can significantly
improve compile times (no more re-parsing the same headers in every file) and avoid issues
like macro collisions or violations from multiple includes.
Key aspects of modules:

• Defined with module declarations in special module interface units (usually .ixx or .mpp
files, or designated by compiler options).

• Use export to specify which definitions (functions, classes, variables, etc.) are visible to
importers.

• Import modules in other files with the import ModuleName; syntax (instead of #in-
clude).

• Modules do not allow cyclic dependencies and have their own internal linkage rules for
non-exported parts.
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1 // math_utils.ixx (Module Interface)
2 export module math_utils; // declare module name
3 export int add(int a, int b) { // export a function
4 return a + b;
5 }
6 // (could have non-exported/internal functions or includes here)
7

8 // main.cpp (Importing the module)
9 #include <iostream>

10 import math_utils; // import the module (no .h file needed)
11

12 int main() {
13 std::cout << "2 + 3 = " << add(2, 3) << "\n";
14 }

In this pseudo-code: math utils.ixx is a module interface file declaring export module math utils;.
We export an add function. This module could be compiled to a binary module interface by
the compiler. In main.cpp, we use import math utils; to import that module and then call
add(2,3) as if it were a normal function. No header files are included for add – the compiled
module provides the necessary information.
The benefits are faster compilation (because the compiler processes each module once and
can reuse the compiled interface) and better encapsulation (only exported symbols are visible,
internal helper functions or includes won’t leak out). For large projects, modules can be
transformative by reducing compile times and increasing clarity of interfaces. Transitioning to
modules from headers is a big change, but it’s one of the directions C++ is moving towards
for the long term.

4.5 Spaceship Operator (<=>)
The three-way comparison operator ′ <=>′, nicknamed the “spaceship operator”, was intro-
duced in C++20 to simplify and unify comparison logic. It automatically generates the conven-
tional comparison operators (==, ! =, <, <=, >, >=) if you default it, and provides a single
operator that returns an ordering category (std::strong ordering, std::partial ordering,
etc.) indicating less, equal, or greater. In earlier C++ versions, writing a class that supports
all six comparison operators required a lot of boilerplate. With <=>, you can often just write
one line.

1 #include <compare>
2 #include <iostream>
3

4 struct Point {
5 int x, y;
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6 // Automatically generate all comparison operators (x then y
lexicographical)↪→

7 auto operator<=>(const Point& other) const = default;
8 };
9

10 int main() {
11 Point a{1, 5}, b{1, 10};
12 if (a < b) { // uses synthesized operator< from operator<=>
13 std::cout << "Point a is less than b\n";
14 }
15 auto cmp = a <=> b;
16 if (cmp < 0) { // cmp is std::strong_ordering, can be compared to 0
17 std::cout << "a < b (strong ordering)\n";
18 }
19 }

Here, Point::operator<=> is defaulted, which means the compiler will compare a and
b by their members in order. It will first compare x; if they differ, that decides the result,
otherwise it compares y. By defaulting it, we also implicitly get operator == (unless we
explicitly define it differently). In main, we can use a < b even though we didn’t explicitly
define < – the compiler generated it. We can also use the result of <=> directly: cmp will
be a std::strong ordering which can be checked for < 0, == 0, or > 0 to see if a is less,
equal, or greater. The spaceship operator makes writing sortable types much easier and less
error-prone. It also allows more efficient comparisons in some cases and supports different
strengths of ordering (strong, weak, partial) for floating-point or custom orderings.

4.6 Designated Initializers
C++20 allows designated initializers for aggregates (structs, arrays, unions) similar to C99.
This means you can specify the names of fields you want to initialize in curly brace initialization.
This was not allowed in C++98/C++11 (where aggregate initialization had to be in order
without skipping fields). With designated initializers, the code is clearer and you can omit
some fields (they’ll be value-initialized) or initialize out of order by naming the members.

1 #include <iostream>
2 struct Person {
3 std::string name;
4 int age;
5 bool employed;
6 };
7

8 int main() {
9 // C++20 designated initializers
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10 Person p1{ .name = "Alice", .age = 30, .employed = true };
11 Person p2{ .age = 25, .name = "Bob" }; // employed will be false by

default↪→

12 std::cout << p1.name << " is " << p1.age << "\n";
13 std::cout << p2.name << " is " << p2.age << ", employed=" <<

std::boolalpha << p2.employed << "\n";↪→

14 }

Here we explicitly name name and age for p2 and omit employed, which will default to false
(since Person is an aggregate, omitted fields are value-initialized). This feature can improve
clarity for structs with many fields by labeling initializers, and it avoids mistakes with ordering.

4.7 Other C++20 features
Other notable C++20 Features:

• consteval and constinit: consteval can be used on a function to indicate it must be
evaluated at compile time (a step beyond constexpr for immediate functions). constinit
ensures a global or static variable is constant-initialized (catching if it isn’t).

• Expanded constexpr: C++20 makes many standard library functions constexpr (even
things like std::vector methods) and allows allocation in constexpr contexts, making
compile-time computation far more powerful.

• Calendar and Time Zone library: ¡chrono¿ got calendar/timezone utilities (year, month,
etc. types).

• std::span: A lightweight view similar to string view but for arrays of any type (not
owning, just pointer+size).

• Three-way comparison for primitives: The ¡=¿ operator is also defined for built-ins, and
new comparison categories like std::strong ordering indicate results of comparisons.

C++20 thus delivers a broad range of enhancements. From concepts (which revolutionize
template programming by making constraints explicit) to coroutines (enabling a new style
of async and generator code), to ranges (which add “huge amount of expressive power and
flexibility” to how we work with collections), C++20 makes the language more powerful and
expressive while also cleaner and easier to use in many respects.

Summary
Modern C++ (11/14/17/20) has introduced features that change how we write C++ com-
pared to the C++98 era. auto and decltype reduce verbosity in code. Range-based loops and
algorithms with lambdas make iteration and algorithms cleaner. Move semantics and smart
pointers drastically improve performance and safety by handling resources better. constexpr
and consteval enable more compile-time computation, while static assert and concepts
catch errors early at compile time with clear intent. New types like optional, variant, any,
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string view, and span extend the vocabulary for safer and more expressive code. Modules
and coroutines are big modern features that pave the way for large-scale projects and asyn-
chronous programming. Each C++ revision builds on the previous, so adopting these features
will make your code more idiomatic, efficient, and easier to maintain in the long run, while
still retaining C++’s power and flexibility.

Edited by Adam Abed Abud and AI
For more information, visit: adam-abed-abud. com
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